IdeBagus - Web Design dan hosting untuk website Indonesia

Virgotech Search

Custom Search

19 June 2006

Cooling Computers with Tiny Jet Engines


Cooling Computers with Tiny Jet Engines
Hewlett-Packard is adapting fans from radio-controlled jets to relieve heat-stressed computer servers.
By Wade Roush



The computer servers that fill huge data centers are producing more heat with every new generation of processors. It's a problem that's sending engineers on a search for cooling fans that are both small enough to fit inside ever-smaller server chassis and powerful enough to dispel increasing amounts of heat. At Hewlett-Packard, they've found one answer in an unexpected place: model jet airplanes.
To cool its next generation of commercial servers, the company is using electric-ducted fans (EDFs), originally developed by model airplane hobbyists to power radio-controlled jets. Essentially propellers in a box, the fans run so fast and produce so much air pressure that they should be able to provide the cooling needs for the next several generations of HP servers, according to Wade Vinson, an engineer in the company's Industry Standard Server Group.
In an electric-ducted fan, which is the most popular form of radio-controlled jet motor, the fan's blades are placed inside a tube, or "duct." Because the blades are shorter than typical propeller blades, they spin faster, thereby creating more thrust. Furthermore, the duct reduces noise and prevents air vortices from forming around the tips of the blades -- which saps the thrust produced by traditional propellers.
Of course computer servers don't need thrust, since they generally don't go anywhere. Instead, Vinson and his team showed that EDF blades can be redesigned to produce pressure. The fan blades on their prototypes force air into a server's chassis, so that a certain volume of air per minute flows past the heat sinks (aluminum or copper fins attached to most CPUs) and carries away heat through convection.
The end product is HP's Active Cool Fan, scheduled to debut in its next generation of BladeSystem servers. At their most efficient setting, according to Vinson, the fans consume just one-third the power of traditional computer fans; and they're smaller than regular fans, which means engineers can make the servers thinner and pack more electronics into them. "If you have 10 traditional servers today, we could put 16 servers in the same space," says Vinson.
The prototype HP fans are built from sturdier, more reliable parts than today's computer fans, according to Vinson, and they deliver air with enough force to cool the smaller, denser, and hotter servers on HP's drawing boards. "They literally blow you away," he says; "it's like picking up a leaf blower."
The time is ripe for better computer cooling technology. In essence, CPUs are tiny radiators, which happen to do computational work as they busily convert electricity into heat. Every watt of energy used by a data center's servers in the form of electricity has to be expelled as heated air. But, as computer manufacturers make processors smaller and faster and pack them more closely together, it's become harder and harder to push enough air through a server to keep the electronics running smoothly.
This situation can translate into huge problems for corporate data centers with hundreds or thousands of servers -- such as the ones that keep our online economy running at facilities managed by Google, Yahoo, eTrade, and the like. Servers that overheat can shut down, slowing processing and increasing the load on other servers; and they force companies to spend hundreds of thousands of dollars on new air-conditioning systems and the electricity to run them.


Thank's To Source

No comments: